

Evolução da Histoquímica Vegetal

► HISTOQUÍMICA:

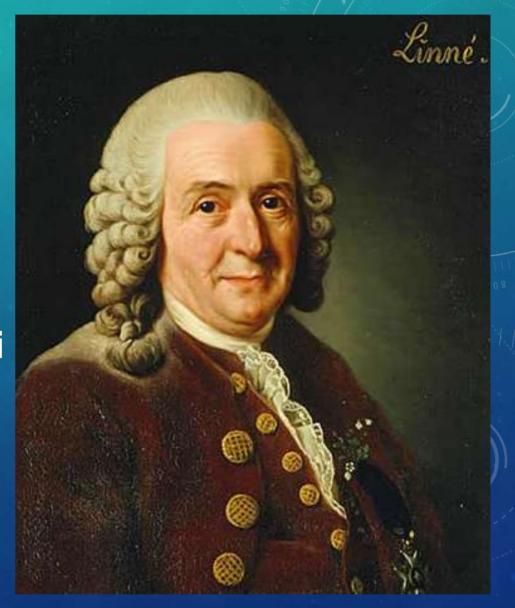
A histoquímica tem como objetivo localizar *in situ*, os principais grupos químicos que ocorrem nos tecidos. Como tal, a histoquímica associa à histologia um aspecto químico, o da determinação da natureza das substâncias presentes nos tecidos e sua localização.

► HISTOQUÍMICA:

► O desenvolvimento da histologia e histoquímica vegetal não pode ser dissociado da evolução das técnicas de estudos dos tecidos animais.

► Os métodos de fixação, inclusão, descoberta de corantes e demais técnicas, sempre que desenvolvidas podiam ser utilizadas tanto para animais como para vegetais.

► Salvo as adaptações necessárias às particularidades químicas


► HISTOQUÍMICA:

► Contudo, a forma como a histoquímica foi utilizada em plantas e animais (incluindo aqui a pesquisa médica).

► Grandes mudanças ocorreram ao longo do tempo nas técnicas de coloração utilizadas em histologia valendo-se da química, biologia molecular e imunologia, que coletivamente facilitaram o estudo de órgãos e tecidos.

 Embora estudos botânicos (taxonômicos e fisiológicos) remontem aos últimos séculos antes de Cristo com os pensadores gregos e continuem até os trabalhos de Linnaeus (1707-1778), foi apenas a partir da metade do século XIX que houve progresso substancial da Anatomia Vegetal.

• Estudos anatômicos relacionados à Paleobotânica, iniciado com o estudos dos fósseis.

 Alemanha e França foram os países que mais se dedicaram à Anatomia Vegetal.

• Posteriormente a Inglaterra, sobretudo ao estudo anatômico comparativo entre plantas fósseis e vivas.

 Na Alemanha houve uma tendência a produção de descrições detalhadas.

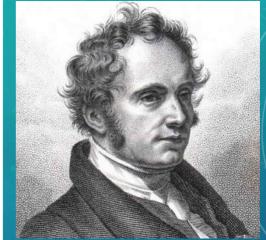
Na França, houve uma tendência a estudos comparativos

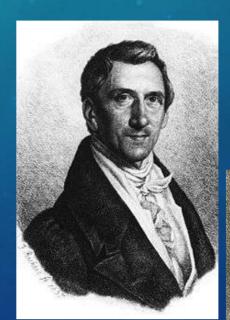
Período	Investigador	Contribuição	Termos e Conceitos
369 -262 AC	Theophrastus de Eresus "Pai da Botânica" Filósofo Grego	Descreveu a morfologia dos tipos de órgãos e a relação entre eles. Descreveu a anatomia interna dos caules, raízes e folhas.	
1519 - 1603	Andrea Caesalpino Filósofo italiano	Iniciou uma morfologia idealística estudando a "alma" das plantas.	Postulou canais para condução. Observou que raízes não apresentam medula.

Período	Investigador	Contribuição	Termos e Conceitos
1635 - 1703	Robert Hooke Matemático e arquiteto inglês	Examinou muitos objetos com seu microscópio recentemente inventado. Micrographia. 1665.	O termo célula foi cunhado em referência às cavidade da cortiça e carvão.
1628 - 1694	Marcello Malpighi Médico e professor italiano	Pesquisou, independentemente de Grew, por similaridades entre estruturas animais e vegetais.	Descobriu vasos espirais e estômatos.

Zacarias Jansen construiu,
 em 1591, o primeiro
 microscópio composto
 rudimentar. Contudo, este tinha
 baixa magnificação,
 apresentasse aberrações
 esféricas e cromáticas e

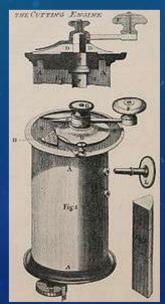
Período	Investigador	Contribuição	Termos e Conceitos
1641 - 1712	Nehemia Grew "Fundador da Anatomia Vegetal" Médico Inglês	Apresenta a classificação dos tecidos vegetais como se consistissem em dois diferentes "corpos" (madeira e fibras vs. casca, medula, parênquima e polpa). Reconheceu sistemas de tecidos horizontais e verticais. Descreveu o crescimento secundário da casca e madeira. The Anatomy of Vegetables Begun. 1672.	"Parenchyma of the Barque is much the same thing, as to its conformation, which the Froth of Beer or Eggs is, as a fluid" Vaso foi cunhado com referência aos vasos espirais.
1632 - 1723	Anton van Leeuwenhoek Holandês	Aperfeiçoamento do microscópio	Descreveu os vasos pontoados
1700 - 1781	Du Hamel Arboriculturista francês		Cunhou o termo câmbio em referência à zona proliferativa gelatinosa no córtex interno.
1733 - 1794	Caspar Friedrich Wolff Alemão	Teorizou que o tecido é uma matriz homogênea preenchida com bolhas, como a massa (pão) em crescimento.	




• O primeiro relato do uso de um corante para estudar estruturas biológicas data de 1673, quando Anton van Leeuwenhooek utilizouse do extrato de bulbos de *Saffron crocus*, uma especiaria, para

estudas seus espécimes.

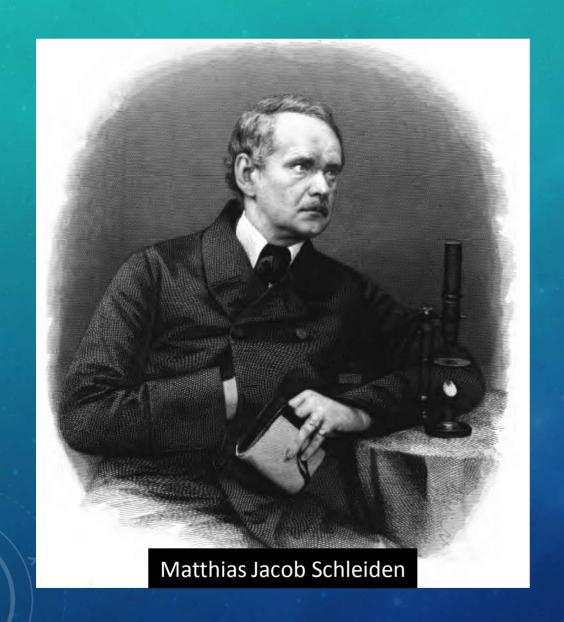
Período	Investigador	Contribuição
1776 - 1854	Charles Francois Mirbel Francês	Elaborou a teoria de Wolff. Teorizou que novas células surgem em uma matriz homogênea como cavidades com aberturas entre elas para a passagem de seiva.
1766 - 1833	Kurt Sprengel	Se opôs à teria de Mirbel. Propôs que novas células surgiam dentro do conteúdo das células mais velhas (grãos de amido?) que se expandiriam por meio da absorção de água.
1779 - 1864	Ludolph Christian Treviranus	Demonstrou que os vasos se formavam pelo desaparecimento das paredes transversais. Observou a formação dos espessamentos do protoxilema.
1774 - 1850	Johann Jakob Bernhardi	Descreveu os espessamentos anelares. Reconheceu que os elementos de vaso não se metamorfoseavam.

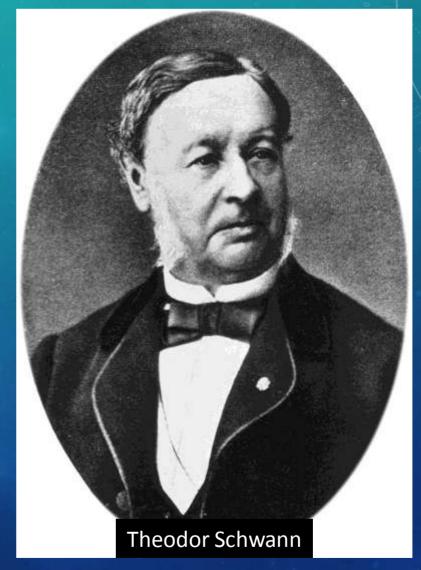


Período	Investigador	Contribuição	Termos e Conceitos
1766 - 1827	Johann Jakob Paul Moldenhawer	Demonstrou que cada célula tinha sua própria parede.	Desenvolveu técnicas de maceração. Cunhou o termo feixe fibrovascular (feixe vascular).
1773 - 1858	Robert Brown		Descobriu o núcleo celular (1831)
1804 - 1840	Franz Julius Ferdinand Meyen	Sugeriu que novas células se originavam a partir da divisão de células preexistentes, e não surgiam livremente.	
1805 - 1872	Hugo von Mohl	Propôs que o protoplasto celular era vivo. Propôs que a parede celular se espessava por aposição.	Descreveu a relação entre parece celular primária e secundária e a natureza das pontoações. Demonstrou a natureza da cutícula, lenticelas e súber. Demonstrou pela primeira vez a conexão dos feixes vasculares do caule e das folhas.
1805 - 1880	Theodor Hartig		Descobri o tubo crivado e sua natureza perfurada no floema.
1804 - 1881	Matthias Jacob Schleiden	Estudava o protoplasma de plantas.	Colaborou com a Teoria Celular (1838)

 Hill introduziu o primeiro micrótomo manual em 1770, sendo que inicialmente eram utilizados apenas para estudos em Anatomia Vegetal.

 A partir de 1848 o micrótomo começou a ser utilizado em tecidos animais


► A parafina é o mais popular meio para infiltração e seu uso foi aperfeiçoado por uma série de pesquisadores ao longo do tempo, sendo que sua descoberta é atribuída, de maneira inconclusiva, a diversos pesquisadores, sendo eles: Klebs, 1869; Born & Sickler, 1871; Giesbrecht, 1881 e Butshili, 1881.

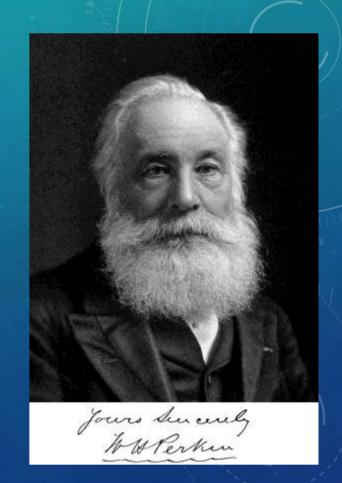


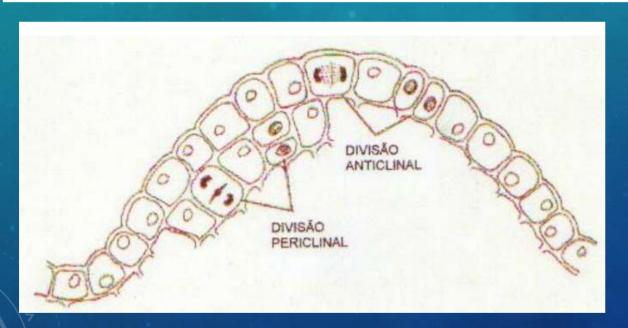
► Glicol metacrilado foi introduzido na década de

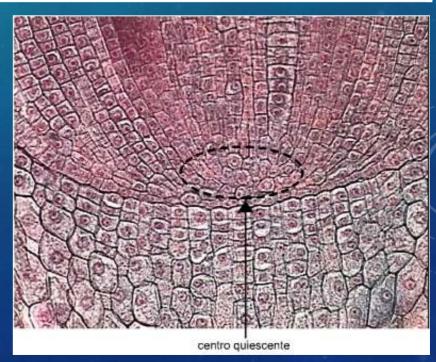
Período	Investigador	Contribuição	Termos e Conceitos
1810 - 1882	Theodor Schwann	Estudava o protoplasma de animais.	Formulou Teoria celular (1838)
1817 - 1891	Wilhelm von Nageli	Estudou a ontogenia dos meristemas apicais. Distinguiu meristemas primários e secundários. Propôs que o espessamento de parede ocorria por intussuscepção.	Descreveu o desenvolvimento dos feixes vasculares a partir do procâmbio. Aplicou os termos xilema e floema para as diferentes partes do feixe vascular.
1832 - 1891	Carl Sanio Professor prussiano	Descreveu como o câmbio se origina e funciona. Descreveu o desenvolvimento secundário da periderme.	Pontoações areoladas
1822 - 1880	Johannes von Hanstein	Propôs a teoria histogênica da organização do meristema apical.	Dermatogênio. Periblema. Pleroma. Caliptogênio.
1831 - 1888	Heinrich Anton De Bary micologista	Demonstrou teoria de Hanstein não era universalmente aplicada e não possuía valor morfológico.	

Teoria Celular (1839)

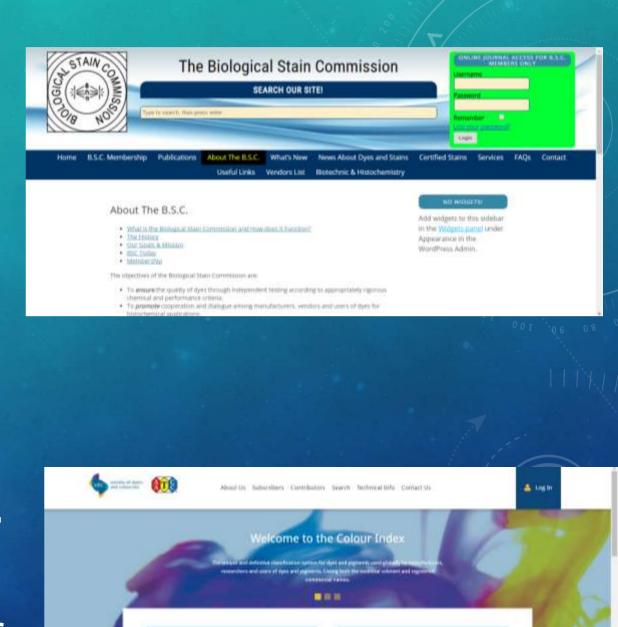
• Embora tenha existido um desenvolvimento preliminar da técnica, foi apenas em 1858 que Joseph von Gerlach usou uma mistura de carmim e gelatina como um corante histológico.


Carmim é proveniente das escamas da cochonilha

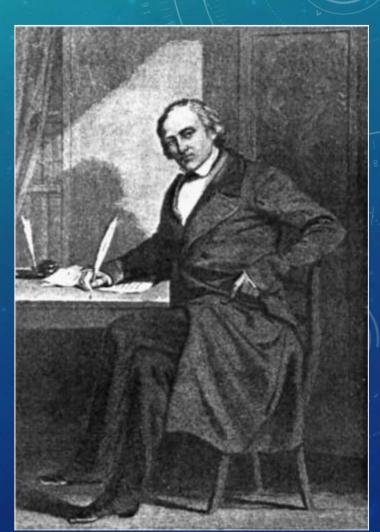



- O maior desenvolvimento da histologia se deu a partir de corantes desenvolvidos sinteticamente.
- Muitos químicos trabalharam com corantes no início do século XIX, um dos quais teve grande destaque foi Willians Henry Perkin, que em 1856 sintetizou acidentalmente a mauveina, o primeiro corante químico orgânico.
- O azul de toluidina é um dos derivados deste corante.
- Usado amplamente como corante de rotina em

Período	Investigador	Contribuição	Termos e Conceitos
1832 - 1897	Julius von Sachs	Propôs a primeira classificação fisiológica dos tecidos vegetais que eram derivados a partir dos meristemas.	
1854 - 1945	Gottlieb Haberlandt	Physiologische Pflanzenanatomie. 1884. Agru pou os tecidos de acordo com suas funções fisiológicas, desconsiderando a classificação e os arranjos morfológicos.	


Período	Investigador	Contribuição /_/
Schmidt	1924. Propôs o método de organização apical com base em planos de divisão celular.	Teoria Tunica-Corpus.
Foster	1943. Propôs zonas de crescimento no meristema apical de gimnospermas.	Iniciais apicais. Camada do manto. Zona de células mãe centrais. Meristema. Medula. Zona celular semelhante ao Câmbio.
Clowes	1961. Descreveu o centro quiescente no meristema apical da raiz.	05, 1111

► Em 1922, foi criada nos EUA a Biological Stain Comission, para garantir que histologistas e microbiologistas continuassem seus trabalhos, visto que devido a Primeira Guerra Mundial houve um bloqueio na importação de corantes que eram produzidos, sobretudo, pela Alemanha.


► Em 1924, foi lançado pela Society of Dvers and Colourists o primeiro Colour

Find out more about becoming a contributor

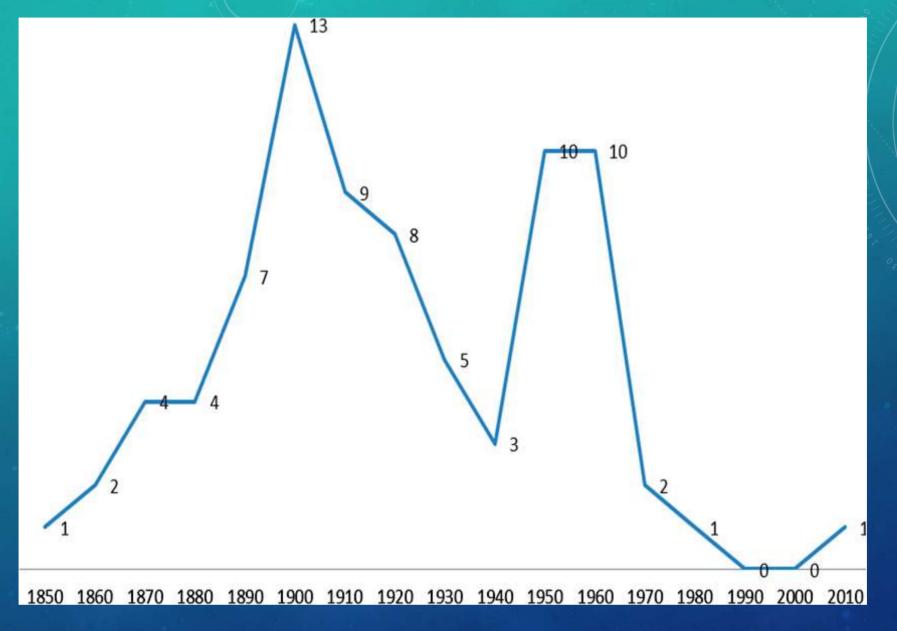
• A Botânica foi a principal disciplina científica na qual a histoquímica se desenvolveu, com vários livros a respeito do tema, já no início do século

- XIX: 1. Essai de Chimie Microscopique Appliquee a la Physiologie – Francois-Vincent Raspail (1830)
 - 2. Nouveau Systeme de Chimie Organique Francois-Vincent Raspail (1833)
 - 3. Lehrbuch der physiologischen Chemie Karl Gotthelf Lehmann (1842)
 - 4. Handbuch der Experimental Physiologie der Pflanzen - Julius von Sachs (1865)

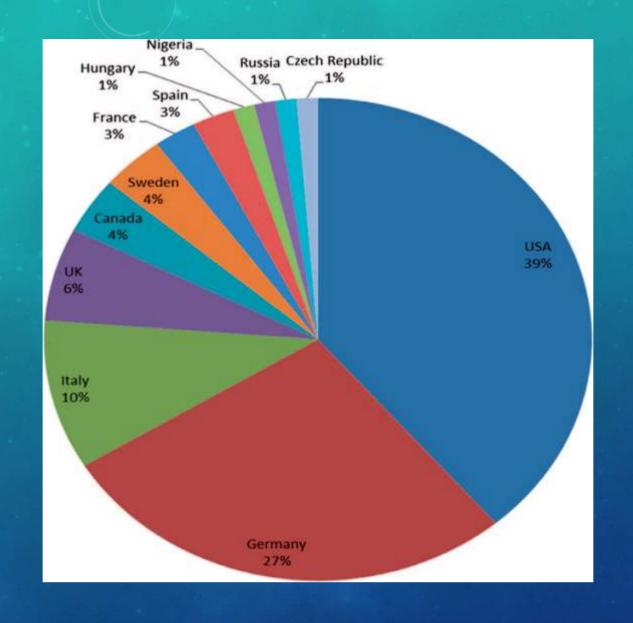
 Curiosamente, os botânicos mantiveram um interesse básico nos processos químicos celulares subjacentes a prática da histoquímica

• Os histologistas e histoquímicos orientados para a zoologia e área médica usaram técnicas de microscopia e coloração, principalmente, para promover o desenvolvimento da microanatomia, taxonomia e nosologia.

► Os fisiologistas celulares depreciavam os esforços dos histologistas na segunda metade do século XIX como indignos de verdadeiro respeito científico.


► Os morfologistas eram considerados pouco mais do que clérigos e escribas que registravam suas observações visuais sem correlacioná-las com achados químicos.

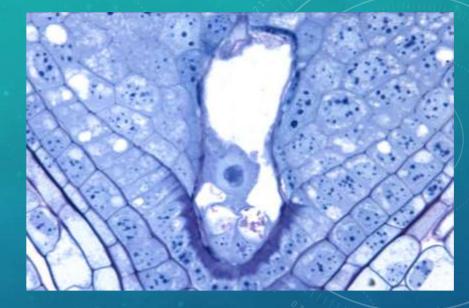
► Essa percepção foi favorecida pela tendência de muitos histologistas para abraçar novos corantes como um meio para um fim (ou seja, a

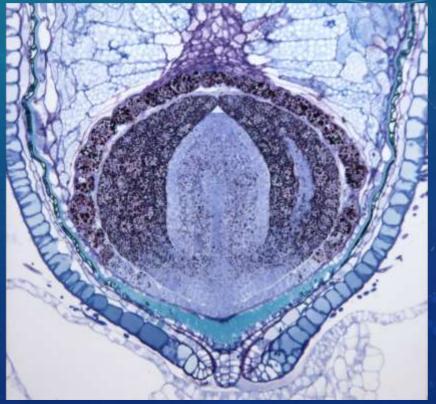

► Raspail, por exemplo, para verificar a presença de amido em um determinado tecido, aplicava lugol em um ensaio que continha um macerado do tecido em análise e, também preparava cortes a analisados com lugol ao serem microscópio.

► Contudo, na década de 1950 as técnicas histoquímicas deixaram de ser interpretadas apenas como técnicas de coloração e, passaram a contribuir significativamente com conceitos sobre processos dinâmicos nos tecidos e células, assim como para diagnostico de patologias.

Introdução de métodos histoquímicos ao longo das décadas

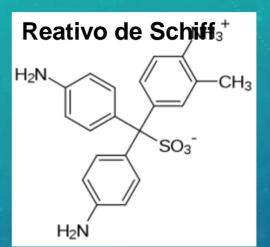
Técnicas e Aplicações

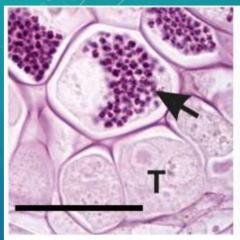

AZUL DE TOLUIDINA


$$\begin{array}{c|c} H_3C & & CI^- \\ H_2N & & S & CH_3 \\ \hline \\ CH_3 & & CH_3 \\ \end{array}$$

Corante de rotina em laboratórios de Anatomia
 Vegetal que utilizam historesina.

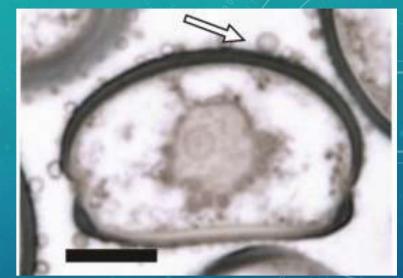
Metacromática

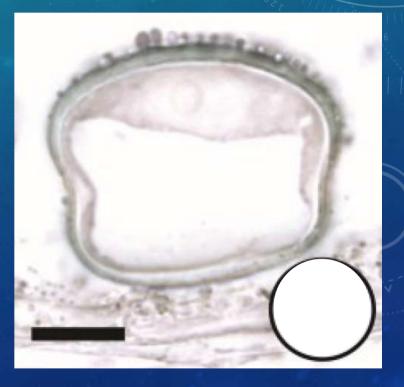

• Paredes do xilema e esclerênquima (verde ou azul-esverdeado); paredes do colênquima e parênquima (vermelho púrpura); lamela média e paredes do floema (vermelho); calose e amido não coram.



PAS

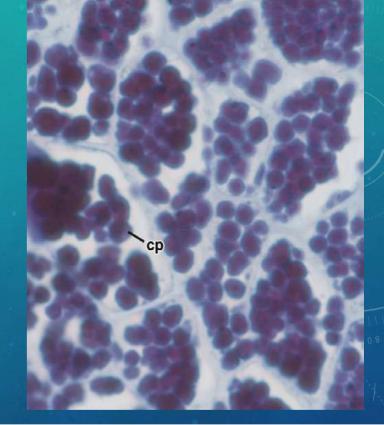
- Analisar a natureza química de compostos de reserva.
- Ligação do Reativo de Schiff à grupos aldeídos, produzidos pela reação com o ácido periódico.
- Polissacarídeos neutros se coram em vermelho, assim como alguns componentes da lamela média.

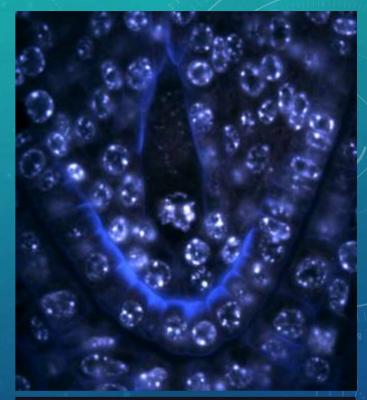


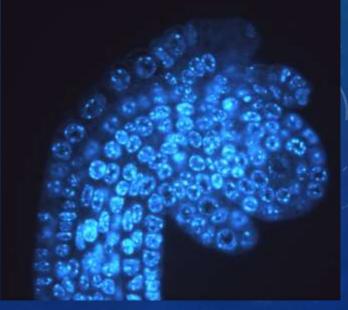


► Sudan Black

• Cora uma variedade de lipídeos, incluindo gorduras neutras, ceras, fosfolipídios.

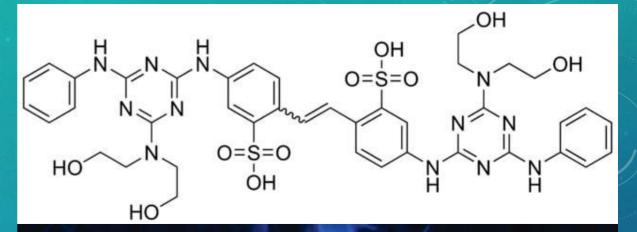

• A reação baseia-se na propriedade do corante, solúvel em gordura, em se dissociar do seu solvente e penetrar no

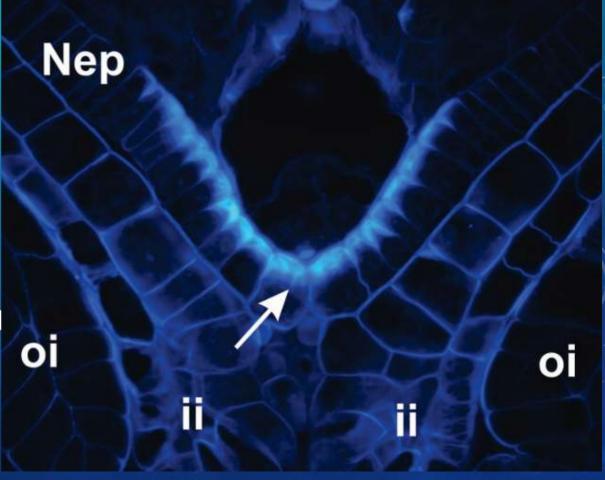

► Azul de Bromofenol


- Solução alcoólica de azul de bromofenol
 0,1% e cloreto de mercúrio 10%.
- Princípio do teste: o azul de bromofenol se liga à grupos carregados positivamente em proteínas, o Hg forma complexo com os grupos hidroxila potencializando a ligação com o corante.
- Corpos proteicos coram de azul escuro a

► DAPI (4',6-diamidino-2-Fenilindol)

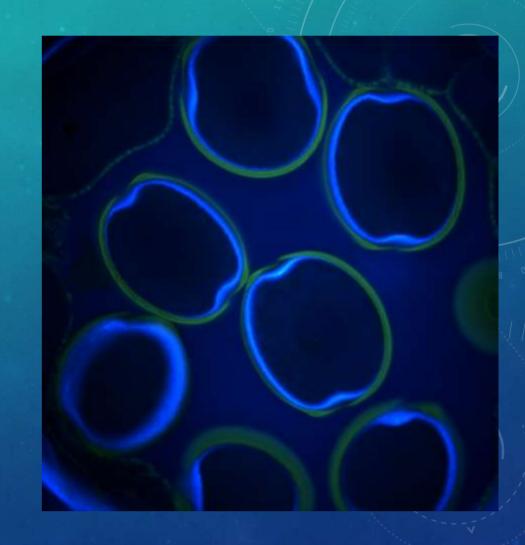
- Observação detalhada de eventos nucleares,
 quantificação de DNA em cortes histológicos.
- Se liga à regiões AT do DNA e sob luz UV emite fluorescência azulada.



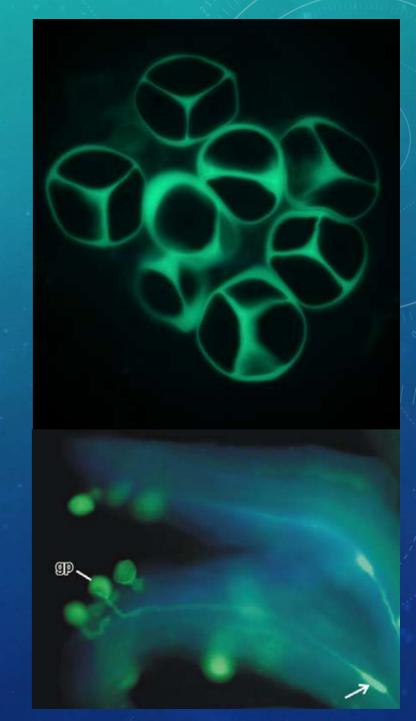

► Calcoflúor White

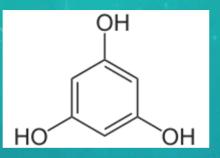
• Parede celular

Utilizado para visualizar celulose


• Glucanos β-1,3 e β-1,4 emitem fluorescência secundária azul clara quando submetidos a luz UV.

Auramina

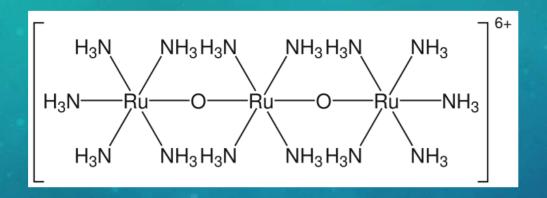

- Análise da exina e orbículos
- Auramina tem propriedades
 lipofílicas
- Esporopolenina (ácidos graxos, fenilpropanoides, compostos fenólicos


► Azul de Anilina

 Muito utilizado para analise de deposição de calose durante a androsporogênese e desenvolvimento do tubo polínico.

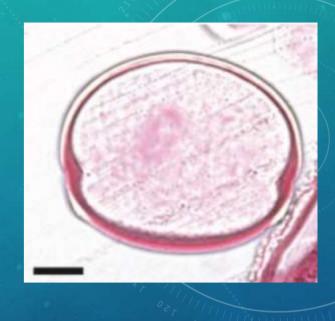
• Fluorocromo se liga à calose de uma maneira ainda não completamente conhecida.

► Floroglucinol



- Solução A: Floroglucinol 2% em álcool 95%
- Solução B: Ácido clorídrico 25%
- O floroglucino liga-se especificamente em unidades de aldeído coniferílico que constituem a lignina.

Ligninas coram de rosa a vermelho



▶ Vermelho de Rutênio

• Especificidade do corante eventualmente é questionada. Pectinas se coram intensamente de

